Lesson 20. Tangent Planes and Linear Approximations

0 Warm up

Example 1. Find an equation of the plane that passes through $(-1,1,5)$ and is perpendicular to the vector $\langle 2,4,-3\rangle$.

1 Tangent planes

- Let S be a surface with equation $z=f(x, y)$
- Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S
- So $z_{0}=$
- Let T_{1} and T_{2} be the tangent lines at P in the x - and y-directions, respectively
- The tangent plane to the surface S at point P is the plane that contains both tangent lines T_{1} and T_{2}

- The tangent plane must have an equation of the form $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ or equivalently,
\square
- If this is the equation of the tangent plane, its intersection with the plane $y=y_{0}$ must be the tangent line T_{1}
- Setting $y=y_{0}$, we obtain
- Looking at this equation a must be
- Similarly, b must be
\Rightarrow An equation of the tangent plane to the surface $z=f(x, y)$ at point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

Example 2. Find the tangent plane to the surface $z=x^{2}+x y+3 y^{2}$ at the point $(1,1,5)$.

2 Linear approximations

- What do the level curves of a plane look like?
- As we zoom in on the level curves of an arbitrary surface, they start to look more and more like equally spaced parallel lines
- For example: $f(x, y)=2 x^{2}+y^{2}$

\Rightarrow We can use tangent planes to approximate function values

- The linear approximation of f at (a, b) is
\square
- Compare to equation for tangent plane above: use $x_{0}=a, y_{0}=b, z_{0}=f(a, b)$

Example 3. Find the linear approximation of $f(x, y)=x e^{x y}$ at $(1,0)$. Use it to approximate $f(1.1,-0.2)$.

Example 4. Here is the wind-chill index function $W(T, v)$ we have seen in previous lessons:

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Wind speed (km/h)											
	$T v$	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

Once upon a time, we estimated $W_{T}(-15,40) \approx 1.3$. In a similar fashion, we can estimate $W_{v}(-15,40) \approx-0.15$. Find the linear approximation of $W(T, v)$ at $(-15,40)$. Use it to approximate $W(-12,45)$.

- Why bother with linear approximations?
- Desert island
- More importantly: linear functions (functions of the form $f(x, y)=a x+b y$) are much easier to deal with that other types of functions
\Rightarrow Linear approximations form the basis of many algorithms for complex problems
- Disclaimer: equations for tangent planes and linear approximations above do not necessarily apply when the partial derivatives of f are not continuous

