Lesson 20. Tangent Planes and Linear Approximations

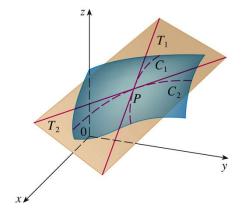
0 Warm up

Example 1. Find an equation of the plane that passes through (-1,1,5) and is perpendicular to the vector (2,4,-3).

1 Tangent planes

- Let S be a surface with equation z = f(x, y)
- Let $P(x_0, y_0, z_0)$ be a point on S

- Let T_1 and T_2 be the tangent lines at P in the x- and y-directions, respectively
- The **tangent plane** to the surface S at point P is the plane that contains both tangent lines T_1 and T_2



- The tangent plane must have an equation of the form $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ or equivalently,
- If this is the equation of the tangent plane, its intersection with the plane $y = y_0$ must be the tangent line T_1
- Setting $y = y_0$, we obtain
- Looking at this equation *a* must be

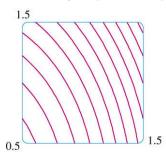


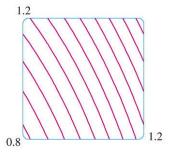
- Similarly, b must be
- \Rightarrow An equation of the tangent plane to the surface z = f(x, y) at point $P(x_0, y_0, z_0)$ is

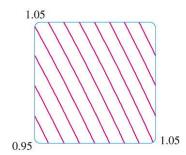
Example 2. Find the tangent plane to the surface $z = x^2 + xy + 3y^2$ at the point (1,1,5).

Linear approximations

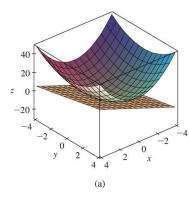
- What do the level curves of a plane look like?
- As we zoom in on the level curves of an arbitrary surface, they start to look more and more like equally spaced parallel lines
 - For example: $f(x, y) = 2x^2 + y^2$

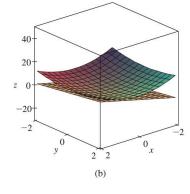


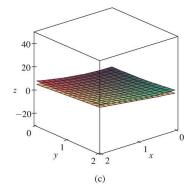




⇒ We can use tangent planes to approximate function values







- The **linear approximation** of f at (a, b) is
 - Compare to equation for tangent plane above: use $x_0 = a$, $y_0 = b$, $z_0 = f(a, b)$

Example 4. Here is the wind-chill index function $W(T, \nu)$ we have seen in previous lessons:

					W	ind spec	ed (km)	/h)				
	T^{v}	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
(i)	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
Actual temperature (°C)	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
ratur	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
преі	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
al te	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
ctui	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
∢,	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

Once upon a time, we estimated $W_T(-15, 40) \approx 1.3$. In a similar fashion, we can estimate $W_V(-15, 40) \approx -0.1$	٥.
Find the linear approximation of $W(T, v)$ at $(-15, 40)$. Use it to approximate $W(-12, 45)$.	

- Why bother with linear approximations?
 - Desert island
 - More importantly: **linear functions** (functions of the form f(x, y) = ax + by) are <u>much</u> easier to deal with that other types of functions
 - ⇒ Linear approximations form the basis of many algorithms for complex problems
- Disclaimer: equations for tangent planes and linear approximations above do not necessarily apply when the partial derivatives of *f* are not continuous